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Abstract
Shape registration is a longstanding subfield in image processing that involves

aligning an observation image to a known template. Kato et al. [1] have recently
proposed a novel correspondence-free nonlinear shape registration (NLSR) framework
expressing the registration problem as that of finding an approximate solution to a sys-
tem of low-order polynomial ω equations, which is both generic and quick. However,
while generally robust, NLSR does not always handle registrations reliably, particularly
where the choice of ω functions happens not to suit the particular template-observation
pair. We propose a simple and effective tunable procedure to mitigate this issue, and
demonstrate its utility on various datasets.
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1 Introduction
In [1], an unrestricted featureless registration approach is suggested, whereby a sufficiently-
large nonlinear system of equations is integrated over the image domain, and solved by
Levenberg-Marquardt (LM) [2]. In general, the target of registration is to obtain the
parameters of some arbitrary ϕ : R2 → R2 diffeomorphism. In the absence of prede-
fined landmarks, area-based methods that consider all (normalised and centered) shape
pixels equally as such are popular [3, 4, 5, 6]. The approach taken in [1] is to introduce
a set of functions {ω : R2 → R}, such that

ω(y) = ω(ϕ(x))⇔ ω(x) = ω(ϕ−1(y)) (1)

where x is the template, y is the observation, and ϕ−1 is guaranteed to exist –
intuitively, the template and observation can always be swapped. From the chosen set
of functions, ∫

Fo

ωi(y)dy =

∫
Fi

ωi(ϕ(x))|Jϕ(x)|dx, i = 1, . . . , l (2)

where F denotes foreground pixels and l > k, with k being the number of pa-
rameters in ϕ (e.g. k = 9 under affine transformation assumptions, as is the default
in the provided demonstration code1). Various ωi sets were tried by the authors, who
concluded that registration quality is almost entirely unaffected by the choice of func-
tion, as long as they are rich enough. Therefore, low-order polynomials were selected
for their computational tractability. They further show that the Levenberg-Marquardt
solver can be adapted to run in time independent of the number of pixels from the
polynomial property of the basis functions.

2 Observations
It can be noted that the NLSR framework, while largely robust, remains approximative.
There is no theoretical assurance that ω will work for any particular {x,y} pair, or that
the possibly overdetermined set of integrals has an exact solution. In fact, it is proba-
ble that registration accuracy can be improved with diminishing returns by increasing
l and/or the number of LM iterations. However, there remain occassional glaring fail-
ures, that we suspect can be avoided by perturbing either ωi or the original template
domain. In practice, we employ the latter approach due to potential complications in
parameter perturbation [7].

Essentially, registration failure can be easily detected post-LM from the absolute
similarity δ = |Fr∪Fo|

|Fr|+|Fo| between the template and registered observation. if δ lies
below a certain threshold, a perturbation search (PS) over the transformed template can
be attempted, i.e. we introduce a set of γj functions to Equation 2:

∫
Fo

ωi(y)dy =

∫
Fi

ωi(γj(ϕ(x)))|Jϕ(x)|dx, i = 1, . . . , l, j = 1, . . . ,m (3)

1http://www.inf.u-szeged.hu/%7Ekato/software/planarhombinregdemo.html
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Since we know the parameters of γ, the parameters of the original ϕ can be deduced
if required, but in most applications their composition γ(ϕ(.)) should suffice. Again,
there is no particular restriction on the properties of γ, but a good starting point would
seem to be simple rotation, as parameterized by θ. A basic wrapper would then be:

Algorithm 1 NLSR wrapper algorithm for perturbation search

Input: Binary images of the template and observation
Output: k parameters of the estimated transformation ϕ̂

1: Execute original NLSR algorithm
2: if δ > δt then
3: Return obtained parameters
4: else
5: j ← 0
6: δbest ← 0
7: while δbest <= δt AND j < m do
8: j ← j + 1
9: Generate γj-transformed template

10: Execute NLSR on γj-transformed template
11: if δγj > δbest then
12: δbest ← δγj
13: Save current parameters as best known
14: end if
15: end while
16: Return best known parameters
17: end if

Note that this formulation is not the same as incorporating rotation into the ω-
functions, as suggested in [1]; for example, rotated power functions were proposed:

ωi(x) = (x1cosαi − x2sinαi)ni(x1sinαi + x2cosαi)
mi (4)

with αi ∈ {0, π6 ,
π
3 } and (n,m) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)}, for a total of 12

equations. Simply put, by introducing the “search” within ω, the LM minimization is
on multiple distortions of the template simultaneously, but none in particular, and there-
fore the final optimization is expected to be less precise, being in a sense a compromise.
This is borne out by experimental results showing that rotated power functions produce
registrations with higher error than the same number of non-rotated ones.

Therefore, if the objective is to eliminate gross misalignments, it would be rea-
sonable to separate the higher-level transformation from the minimization procedure,
which can be viewed as attempting specialised optimizations on multiple (intrinsically
equivalent) templates and picking a good-enough registration, instead of a general op-
timization on a single template. Additionally, perturbation search is also distinct from
adapting ϕ, as was demonstrated with ϕ = (P ◦ γ ◦ S)(x) in the case of industrial
inspection, as no prior knowledge is required to be assumed about the actual transfor-
mation. It can therefore be employed under any circumstances.
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θ 0(2π)
16

1(2π)
16

2(2π)
16

3(2π)
16

4(2π)
16

5(2π)
16

6(2π)
16

7(2π)
16

δ 0.08 0.10 0.12 0.04 0.34 0.11 0.26 0.23

x

ŷ

θ 8(2π)
16

9(2π)
16

10(2π)
16

11(2π)
16

12(2π)
16

13(2π)
16

14(2π)
16

15(2π)
16

δ 0.20 0.21 0.24 0.18 0.93 0.93 0.93 0.93

x

ŷ

Figure 1: Example of perturbation search on Image 36, Observation 29
NLSR by default returns the registration ŷ with θ = 0(2π)

16 , δ = 0.08, which is poor.
In this case (δt = 0.9), search would stop after θ = 12(2π)

16 , as δ = 0.93 > δt

3 Experimental Results
For our first experiment, we use the same benchmark dataset of 1517 images as used
in [1], comprising 37 different images each with one template and 40 independent
observations. The images are binary, with background pixels in black and foreground
pixels in white. The observations were generated synthetically from the template by
randomly chosen projective transformations.

We first execute the provided software with default settings on all 1480 observa-
tions, to confirm that NLSR is indeed robust, with results shown in Figure 2. 91.1%
of observations have δ > 0.9, and 98.0% have δ > 0.7, which indicates generally
successful registration. However, there is also a minority of obviously incorrectly reg-
istered images. Note that NLSR has previously been demonstrated to be superior to the
well-known Shape Context method [8] on this dataset in [1].

We next execute the provided software incorporating perturbation search with δt =
0.9 and γ = {

(
cosθ −sinθ
sinθ cosθ

)
, θ = 2π

16 , . . . ,
15(2π)

16 }, using the wrapper described in Al-
gorithm 1 (example output in Figure 1). The improved registration results are shown
in Figure 3. 94.7% of observations have δ > 0.9, and 99.9% of observations have
δ > 0.7. The single exception, observation 7 of image 20, has δ discounted due to its
thinness, with almost all its error attributable to translation. The effect of perturbation
search on the thirty observations for which δ <= 0.7, roughly corresponding to reg-
istration failure, under the original NLSR is cataloged in Figure 4. The average time
required per image does increase from 2.11s to 5.50s.
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Figure 2: Histogram of δNLSR
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Figure 3: Histogram of δNLSR+PS

NLSR NLSR+PS NLSR NLSR+PS NLSR NLSR+PS NLSR NLSR+PS

0001/0030 (0.30/0.92) 0003/0019 (0.50/1.00) 0004/0005 (0.48/0.97) 0004/0009 (0.46/1.00)

0004/0010 (0.22/0.95) 0016/0004 (0.57/1.00) 0016/0008 (0.61/0.98) 0016/0011 (0.66/1.00)

0016/0022 (0.66/1.00) 0016/0028 (0.67/0.96) 0016/0029 (0.66/0.98) 0016/0036 (0.63/0.95)

0020/0007 (0.04/0.59) 0022/0018 (0.68/0.98) 0023/0016 (0.62/0.79) 0023/0017 (0.65/0.73)

0023/0028 (0.55/0.93) 0023/0034 (0.55/0.96) 0025/0039 (0.56/0.76) 0026/0019 (0.41/0.95)

0027/0008 (0.26/0.97) 0027/0029 (0.42/1.00) 0027/0038 (0.40/1.00) 0028/0004 (0.65/0.98)

0029/0001 (0.65/0.90) 0029/0011 (0.63/0.90) 0030/0003 (0.41/0.95) 0034/0008 (0.54/0.99)

0036/0029 (0.08/0.93) 0036/0031 (0.04/0.95)

Figure 4: Comparism of registrations under NLSR and NLSR+PS
δNLSR <= 0.7; overlapping pixels in grey, non-overlapping pixels in black

Legend format: [Image #]/[Observation #] (δNLSR/δNLSR+PS)
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Figure 5: Histogram of δNLSR
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Figure 6: Histogram of δNLSR+PS

NLSR NLSR+PS NLSR NLSR+PS NLSR NLSR+PS NLSR NLSR+PS

hammer 20 (0.07/0.91) hammer 02 (0.07/0.89) hammer 04 (0.00/0.79) hammer 19 (0.20/0.84)

Figure 7: Images with largest improvement in δ for SIID

To test the performance of NLSR+PS against NLSR on observations that are not
pure projective transformations of the template, we use the 216-shape version of the
Shape Indexing of Image Databases (SIID)2 [9]. It consists of 18 categories of objects,
each with 12 binary image observations. While objects of the same category are similar
in appearance, they cannot be mapped perfectly to each other in general. For our
purposes, we select the first observation in each category as the template, and report
the registration results on the remaining 11 observations. Average δ improved from
0.711 for NLSR to 0.785 for NLSR+PS, and the worst misregistrations were again
averted (see Figures 5 and 6)

Finally, we compare the performance of NLSR+PS against NLSR on degraded im-
ages, specifically occluded and disoccluded images, as these non-uniform localised
errors were the types that NLSR were found to be vulnerable against [1]. For each
observation, we created an occluded and disoccluded version, with a square-shaped
region of size equal to 10% of the shape removed or added at a random position re-
spectively.

Although the average δ error was slightly reduced for NLSR+PS from NLSR, per-
turbation search does not qualitatively improve the registrations much in general, which
can be explained by the underlying NLSR remaining an area-based method sensitive to
changes in relative area. Further, the improvement in δ is accompanied by a worsening
of the true error ε = 1

Ft

∑
x∈Ft

|ϕ(x)− ϕ̂(x)| in some image pairs; see Figure 8 for an
example where the area of occlusion dominates the area of the pen clip. This inability
to take such features into account is an inherited limitation of the proposed extension.

2http://www.lems.brown.edu/vision/researchAreas/SIID/
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Template (x) Observation (y) NLSR NLSR+PS

Figure 8: Example of occlusion registration on Image 1, Observation 24
δNLSR+PS = 0.75 > 0.73 = δNLSR, but εNLSR+PS > εNLSR as registration by

NLSR+PS is off by approximately 180 degrees.

4 Conclusion
We have demonstrated that searching over methodical fixed perturbations on the tem-
plate domain upon initial nonlinear registration failure can nearly always reconcile the
discrepancy for two-dimensional image pairs. Furthermore, the amount of time allo-
cated for such a search can be fully controlled by the end-user, although in practice a
small number of additional registrations appears to be sufficient. The procedure might
be further sped up by tighter integration within the LM optimization step, in partic-
ular early stopping when convergence is slow [10]. We expect similar behaviour to
be exhibited for registration both with other ϕ models, and also in higher dimensions.
However, in such cases more dedicated methods [11] of selecting the γj functions
would likely be very helpful, since the space to be explored expands in analogy to
the “curse of dimensionality”. The theoretical question of how the characteristics of γ
affects successful registration remains open.

Supplementary Material
The code for all experiments in this technical report may be downloaded from
http://hamlab.glys.com/perturbsearch/.
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